

Ring Buffers As Fast As Possible

Content

● Motivation
● Queue Basics
● Interface
● Implementation
● Benchmarks

Terminology

● Single Producer/Consumer Bounded Queue
– That’s a mouthful

● Queue or Ring Buffer will have to suffice
– Queue: Fixed size elements
– Ring Buffer: Variable size elements

● I will try to keep to this; If confused, please ask

Motivation

● Logging in real time environments
– One Queue per thread
– One thread emptying Queues

● Started benchmarking Queues

Queue Basics

● Element: Fundamental unit inside queue
– Think: Node in a Linked List

● Produce: Adding elements to the queue
● Consume: Removing elements from the queue

Queue Basics – Members

● Storage
● Produce Position / Tail
● Consume Position / Head

Queue Basics – Produce

bool produce(const T& data) {

auto next = (tail + 1) % SIZE;

if (next == head) return false;

buffer[tail] = data;

tail = next;

return true;

}

Queue Basics – Consume

bool consume(T& out) {

if (head == tail)

return false;

out = buffer[head];

head = (head + 1) % SIZE;

return true;

}

Queue Interface – Produce

● Basic idea: No copies
Not this:

bool produce(const T&);

bool produce(T&&);

● Forces copy or move
– Instance of T needs to exist before call

Queue Interface – Produce

● Basic idea: No copies
Solution: Emplace

template<typename… Args>

bool produce(Args&&…);

● Downside: Generates more code

Queue Interface – Produce

● Basic idea: No copies
Alternative: Callback

template<typename Callback>

bool produce(Callback);

● Requires users to know about placement new
– No publicly available Queue uses this

Queue Interface – Consume

● Basic idea: No copies
Not this:

bool consume(T&);

std::optional<T> consume();

● Forces copy or move

Queue Interface – Consume

● Basic idea: No copies
Solution candidate:

T* peek();

void consume();

● peek returns nullptr when empty

● consume must not be called if queue empty

Queue Interface – Consume

● Basic idea: No copies
Solution: Callback

template<typename Callback>

bool consume(Callback);

● Downside: Generates more code

Queue Interface

● Pattern:
1.Queue code – checks, setup

2.User code – payload

3.Queue code – commit

Interface Optimization

● Fixed vs. variable size of elements
– Variable element size requires overhead in buffer
– Could not find public implementation

Ring Buffer Interface

● Basic idea: No copies
Not this:

bool produce(void*, size_t);

Ring Buffer Interface – First Attempt

● Basic idea: No copies
More like this:

void* produce(size_t);

Bugs abound

Ring Buffer Interface – Attempt #2

● Basic idea: No copies
void* produce_start(size_t);

void produce_abort(size_t);

void produce_commit(size_t);

● Hard to use correctly

Ring Buffer Interface – Attempt #3

● Basic idea: No copies
transaction produce_start(size_t);

void produce_abort(transaction&&);

void produce_commit(transaction&&);

● Still really hard to use correctly

Ring Buffer Interface

● Basic idea: No copies
template<typename Callable>

bool produce(size_t, Callable);

● Least bad option, requires use of placement-
new

Possible Trade-Offs

● Arbitrary Buffer Size vs. Powers of Two
– Low level optimization (modulo vs. bit-wise and)
– Affects complexity of implementation

Possible Trade-Offs

● In-line Buffer vs. Heap-allocated Buffer
– In-line Buffer cannot change size
– Heap-allocated supports large sizes on MSVC

● In-line only goes up to 2^31 - 1 Bytes

– Additional indirection

In-Line vs. Heap – Benchmark

In-Line vs. Heap – Benchmark

Atomics

● Use Atomics with Acquire/Release Ordering
All stores before a Release store will be visible in
another thread after an Acquire load on the same
atomic.

● Acquire/Release has no overhead on x86
– Overhead exists on ARM

Prevent False Sharing

● Put Produce/Consume position each on their
own cache line

● Single cache line is not enough to avoid false
sharing for modern x86/x64 processors
– Solution: two cache lines padding

Padded Layout

Storage Cache Line(s) Produce Cache Line Consume Cache Line

Produce Position Consume Position

N
ai

ve

Padding Padding

Optimization

● This is the common implementation
– e.g.: folly, boost, rigtorp

● Straightforward to implement

Caching

● Every operation needs both positions
– Constant synchronization needed between threads

● Solution: Cache Produce/Consume position
– Cache for Consume in same cache line as Produce etc.
– Only need to load one cache line if buffer is always

empty/full

Caching – New Layout

Storage Cache Line(s) Produce Cache Line Consume Cache Line

Padding

Produce Position Consume Position

Padding

Produce Position
Cache

Consume Position
Cache

O
pt

im
iz

ed

Caching – Produce

bool produce(const T& data) {

auto next = (tail + 1) % SIZE;

if (next == head_cache)

if (next == (head_cache = head))
return false;

buffer[tail] = data;

tail = next;

return true;

}

Caching – Benchmark

Caching – Benchmark

Caching

● First documented in a paper in 2009
● Improves average case, worsens worst case
● Self-balancing

– If empty, consumer falls into worst case more often
– If full, producer falls into worst case more often

Moodycamel

● Unbounded SP/SC Queue
● Usable as both bounded and unbounded
● Performance comparable to or better than

existing implementations

Moodycamel – Benchmarks

Moodycamel – Benchmarks

Why is it faster?

● Splitting Queue into Chunks
– Each Chunk has its own Produce/Consume position
– Each Chunk has a pointer to the next Chunk

● More code, but with right chunk size it can stay
as fast as small queues
– Right size is <= L1D size

Chunked – Benchmark

Chunked – Benchmark

Using Pointers instead of Indices

● Avoid multiplying index with element size
● Forces ability to use arbitrary queue sizes

Pointers – Benchmark

Pointers – Benchmark

Conclusions

● Cache Produce/Consume position for better
performance

● Keep Queue small enough to fit into L1D
(32KiB on recent x64 processors)

● If you need a bigger Queue, implement Queue
of (small) Queues

Thank You!

Questions?

Benchmarks – Ring Buffer

● 8 Bytes overhead per Element
● Elements uninitialized
● Element sizes take overhead into account

Benchmarks

Benchmarks

Benchmarks

Benchmarks

Benchmarks

Benchmarks

Benchmarks – Queue

● No overhead per element
● Elements are initialized

Benchmarks

Benchmarks

Benchmarks

Benchmarks

Links

Ring Buffer Benchmark Results: https://docs.google.com/spreadsheets/
d/1KOw_3-6XaX1No4j5QUmCYYbUTKDtRosy4aYOJYyOikU/
edit#gid=128804321

Queue Benchmark Results:
https://docs.google.com/spreadsheets/d/1Bb_ClWBmr3XqJHGOK_mJ
UmyDNyzDOs0-dy7zaeFHJNA/edit#gid=877059096

GitHub Repository: https://github.com/Deaod/RingBufferBenchmark

MCRingBuffer Paper:
http://www.cse.cuhk.edu.hk/~pclee/www/pubs/ancs09poster.pdf

As an Aside

● Overclocking Memory is a Bad Idea
● Overclocking Dense Memory Doubly so
● Therefore … More Voltage
● Turns out I wrote a Memory Test

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62

